Reactivity of Osmium(VI) Nitrides with the Azide Ion

Konstantinos D. Demadis, El-Sayed El-Samanody, Thomas J. Meyer,* and Peter S. White

Venable and Kenan Laboratories, Department of Chemistry, CB 3290, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

Received October 22, 1997

An extensive redox reactivity is emerging for nitrido complexes of Os(VI). With *trans*- $[Os^{VI}(tpy)(Cl)_2(N)]^+$, 1 (tpy = 2,2':6',2''terpyridine), as the example, reactions that have been uncovered include one-electron reduction to form Os^{II}(N₂)Os^{II} dimers¹

$$2[Os^{VI}(tpy)(Cl)_2(N)]^+ \xrightarrow{2e^-} (tpy)(Cl)_2Os^{II}(N_2)Os^{II}(Cl)_2(tpy)$$
(1)

reversible 4e^{-/3}H⁺ reduction to Os^{II} ammines²

$$[Os^{VI}(tpy)(Cl)_{2}(N)]^{+} \xrightarrow[-4e^{-/3H^{+}}]{} Os^{II}(tpy)(Cl)_{2}(NH_{3}) (2)$$

oxo transfer from O=NMe₃ to give Os^{II} nitrosyls³

$$[Os^{VI}(tpy)(Cl)_2(N)]^+ + O = NMe_3 \rightarrow [Os^{II}(tpy)(Cl)_2(NO)]^+ + NMe_3 (3)$$

and nucleophilic attack by PR3 to give Os^{IV} phosphoraniminates⁴

$$\left[\operatorname{Os}^{VI}(\operatorname{tpy})(\operatorname{Cl})_{2}(N)\right]^{+} + \operatorname{PR}_{3} \rightarrow \left[\operatorname{Os}^{IV}(\operatorname{tpy})(\operatorname{Cl})_{2}(\operatorname{NPR}_{3})\right]^{+}$$
(4)

We report here that an extensive chemistry exists between **1** or $[Os^{VI}(tpm)(Cl)_2(N)]^+$, **2** (tpm = tris(1-pyrazolyl)methane), and the azide ion (N₃⁻), including formation of terminally bound N₂, Os^{II} thionitrosyls, or Os^{III} tetrazoles and electron transfer to give an $Os^{II}(N_2)Os^{II}$ dimer.⁵

Reaction between stoichiometric or excess [PPN]N₃ (PPN⁺ = bis(triphenylphosphoranylidene)ammonium cation) and $[Os^{VI}-(tpm)(Cl)_2(N)]^+$ in H₂O, CH₃OH, CH₂Cl₂, or CH₃CN occurs within seconds to give $Os^{II}(tpm)(Cl)_2(N_2)$ (**2a**), eq 5, for which

$$\frac{[Os^{VI}(tpm)(Cl)_2(N)]^+ + N_3^- \rightarrow Os^{II}(tpm)(Cl)_2(N_2) + N_2}{2}$$
2a
(5)

an intense $\nu(N \equiv N)$ band appears at 2068 cm⁻¹ in KBr ($\nu(^{15}N \equiv^{14}N)$) at 2032 cm⁻¹). $E_{1/2}$ for the Os^{III/II} couple is chemically reversible at a scan rate of 200 mV/s with $E_{1/2} = -0.27$ V (in 0.1 M N(n-Bu₄)(PF₆), vs SSCE, in DMSO), but oxidation with excess Ce^{IV} in H₂O or CH₃CN occurs with loss of N₂ to give [Os^{III}(tpm)-(Cl)₂(L)]⁺ (L = CH₃CN (**2b**) or H₂O (**2c**)).⁶ Reduction of **2** with

- (2) Pipes, D. W.; Bakir, M.; Vitols, S. E.; Hodgson, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1990, 112, 5514.
- (3) Williams, D. S.; White, P. S.; Meyer, T. J. J. Am. Chem. Soc. 1995, 117, 823.
- (4) (a) Demadis, K. D.; Bakir, M.; Klesczewski, B. G.; Williams, D. S.; White, P. S.; Meyer, T. J. *Inorg. Chim. Acta*, in press. (b) Bakir, M.; White, P. S.; Dovletoglou, A.; Meyer, T. J. *Inorg. Chem.* **1991**, *30*, 2835.
- (5) The compounds and salts reported here gave satisfactory elemental analyses and were characterized by infrared and UV-vis spectroscopies and by cyclic voltammetry (see Supporting Information).

cobaltocene (Co(Cp)₂) in CH₂Cl₂ gives (tpm)(Cl)₂Os^{II}(N₂)Os^{II}-(Cl)₂(tpm) (**2d**). In cyclic voltammograms of **2d** in DMSO,

$$2[Os^{VI}(tpm)(Cl)_{2}(N)]^{+} + 2Co(Cp)_{2} \rightarrow 2$$

$$(tpm)(Cl)_{2}Os^{II}(N_{2})Os^{II}(Cl)_{2}(tpm) + 2Co(Cp)_{2}^{+} (6)$$

$$2d$$

chemically reversible Os^{III}–Os^{II}/Os^{II}–Os^{II} and Os^{III}–Os^{III}/Os^{III}– Os^{II} couples appear at $E_{1/2} = +0.04$ V and +0.67 V vs SSCE ($\Delta E_{1/2} = 0.63$ V) at a scan rate of 200 mV/s. **2d** undergoes oxidation by ferrocenium salts to give the mixed-valence form **2e**, eq 7, for which an intense $\nu(N \equiv N)$ stretch appears at 2029 cm⁻¹ in KBr ($\nu(^{15}N \equiv ^{15}N)$) at 1965 cm⁻¹).

$$(tpm)(Cl)_{2}Os^{II}(N_{2})Os^{II}(Cl)_{2}(tpm) \xrightarrow{-e^{-}} 2d [(tpm)(Cl)_{2}Os^{III}(N_{2})Os^{II}(Cl)_{2}(tpm)]^{+} (7)$$

$$2e$$

With 1, the reaction chemistry with N_3^- is highly solvent dependent. In CH₃CN, a reaction occurs with stoichiometric $N_3^$ within seconds to give a mixture of products. The minor product is *trans*-Os^{II}(tpy)(Cl)₂(N₂) (1a) with ν (N=N) at 2097 cm⁻¹ in KBr (ν (¹⁵N=¹⁴N) at 2062 cm⁻¹). The major product is *trans*-Os^{II}-(tpy)(Cl)₂(NCCH₃) (1b), which forms by solvation of 1a. In nonpolar solvents such as acetone or CH₂Cl₂, electron transfer occurs from N₃⁻ to 1 to give *trans*,*trans*-(tpy)(Cl)₂Os^{II}(N₂)Os^{II}-(Cl)₂(tpy) cleanly.^{1a} In H₂O with 2 equiv of N₃⁻, the final product is the azido complex *cis*-Os^{III}(tpy)(Cl)₂(N₃) (1c). Detailed mechanistic information is not available, but its formation can be rationalized by initial *trans* \rightarrow *cis* isomerization of *trans*-[Os^{VI}-(tpy)(Cl)₂(N)]⁺,⁸ followed by attack of N₃⁻ on the nitrido ligand to give Os^{II}-N₂. Substitution of coordinated N₂ by N₃⁻ and final air oxidation result in 1c.

In CH₃CN with N_3^- in excess, the reaction takes a different course. Initial N_3^- attack on **1** and solvolysis give *trans*-Os^{II}-(tpy)(Cl)₂(NCCH₃) (**1b**) (see above). It undergoes reaction with a second N_3^- by a [3+2] cycloaddition with bound CH₃CN⁹ followed by air oxidation to give *trans*-Os^{III}(tpy)(Cl)₂(5-CH₃-tetrazolate) (**1d**, Figure 1). The N²-bound isomer shown in **1d**, which is the final product, is favored on steric grounds.¹⁰ Presumably it forms by linkage isomerization of the initially

 ⁽a) Demadis, K. D.; Meyer, T. J.; White, P. S. Inorg. Chem. 1997, 36, 5678. (b) Ware, D. C.; Taube, H. Inorg. Chem. 1991, 30, 4605. (c) Che, C.-M.; Lam, H.-W.; Tong, W.-F.; Lai, T.-F.; Lau, T.-C. J. Chem. Soc., Chem. Commun. 1989, 1883.

⁽⁶⁾ Oxidation of Os^{II}(tpm)(Cl)₂(N₂) with ferrocenium salts in CH₃CN proceeds with formation of the mixed-valence dimer [(tpm)(Cl)₂-Os^{III}(N₂)Os^{II}(Cl)₂(tpm)]⁺ by a process which is currently under investigation. Taube et al. have reported formation of [(NH₃)₅Os^{III}(N₂)Os^{II}-(NH₃)₅]⁵⁺ after partial oxidation of Os^{II}(NH₃)₅(N₂)^{2+,7}

⁽⁷⁾ Lay, P. A.; Magnuson, R. H.; Sen, J.; Taube, H. J. Am. Chem. Soc. 1982, 104, 7658.

⁽⁸⁾ Williams, D. S.; Coia, G. M.; Meyer, T. J. Inorg. Chem. 1995, 34, 586.
(9) (a) Dori, Z.; Ziolo, R. F. Chem. Rev. 1973, 73, 247. (b) Paul, P.; Nag, K. Inorg. Chem. 1987, 36, 2969.

^{(10) (}a) Jackson, W. G.; Cortez, S. Inorg. Chem. 1994, 33, 1921. (b) Hubinger, S.; Purcell, W. L. Inorg. Chem. 1991, 30, 3707.

Figure 1. ORTEP diagram (30% ellipsoids) of *trans*-Os^{III}(tpy)(Cl)₂(5-CH₃-tetrazolate) with its labeling scheme. Important metric features: Os-(1)-Cl(1) 2.345(2) Å, Os(1)-Cl(2) 2.343(2) Å, Os(1)-N(19) 2.093(5) Å, Os(1)-N(1) 2.087(5) Å, Os(1)-N(12) 1.990(5) Å, Os(1)-N(18) 2.085(5) Å, Cl(1)-Os(1)-Cl(2) 178.86(6)°, N(1)-Os(1)-N(18) 158.5(2)°.

formed N¹-bound isomer although we have no evidence for an intermediate. Isomerization has been observed in related reactions.¹⁰ It was shown independently that a reaction occurs between Os^{II}(tpy)(Cl)₂(NCCH₃) and N₃⁻ in the presence of air to give the same product. $E_{1/2}$ values for the Os^{III/II} and Os^{IV/II} couples are -0.26 and +1.01 V, respectively (in 0.1 M (ⁿBu₄N)-(PF₆), vs SSCE, in DMSO). The crystal structure of **1d**¹¹ (Figure 1) reveals that the *trans* geometry of the starting nitrido is retained. The 5-CH₃-tetrazolato ring is coplanar with tpy. N–N and C–N bond lengths within the tetrazolato ring range from 1.321(9) to 1.345(9) Å consistent with extensive electronic delocalization.¹² *To our knowledge, this is the first Os-tetrazolato complex which has been isolated and structurally characterized*.

Reaction between **1** or **2** and N_3^- in the presence of CS_2 in acetone gives the thionitrosyls *trans*-[Os^{II}(tpy)(Cl)₂(NS)](SCN) (**1e**) and [Os^{II}(tpm)(Cl)₂(NS)](SCN) (**2f**), e.g.

$$[Os^{VI}(tpy)(Cl)_2(N)]^+ + N_3^- + CS_2 \rightarrow 1$$

$$[Os^{II}(tpy)(Cl)_2(NS)]^+ + SCN^- + N_2 (8)$$
1e

In acetone neither **1** nor **2** is reactive with CS_2 or S_8 separately. Reaction between N_3^- and CS_2 is known to occur to give the 5-thio-1,2,3,4-thiatriazolato ring anion, which decomposes to give

Figure 2. Reactivity of *trans*- $[Os^{VI}(tpy)(Cl)_2(N)]^+$ (1) and $[Os^{VI}(tpm)-(Cl)_2(N)]^+$ (2) with N_3^- .

-SCN, N₂, and S⁰.¹³

$$N_{3^{\circ}} + CS_{2} \longrightarrow \overset{S}{\longrightarrow} \overset{S}{\longrightarrow} \overset{N}{\longrightarrow} N \longrightarrow S^{\circ} + -SCN + N_{2} \qquad (9)$$

Presumably, in the presence of 1 or 2, nucleophilic attack on $Os^{VI} \equiv N$ by the thiolato portion of the ring takes place with sulfur atom transfer although we have no mechanistic information. Nucleophilic attack would be accompanied by reduction of Os^{VI} to Os^{II} and formation of the thionitrosyl

In the structurally characterized **1e**, the Os–N(S) bond distance is 1.834(7) Å, \angle Os–N–S is 178.5(5)°, and the N–S bond distance is 1.459(8) Å.¹⁴

These initial results reveal an extensive and novel reactivity chemistry between Os^{VI} nitrides and N_3^- which is summarized in Figure 2.

Acknowledgments are made to the National Science Foundation under Grant No CHE-9503738. E-S. E-S. wishes to thank the Egyptian Government for the Data Collection Grant.

Supporting Information Available: Text presenting experimental procedures for the preparation of the compounds and their spectroscopic characterization, a listing of details of the crystallographic analysis of *trans*-Os^{III}(tpy)(Cl)₂(5-CH₃-tetrazolate)·DMF (1d), and tables of atomic coordinates, isotropic thermal parameters, and bond distances and angles (12 pages). Ordering information is given on any current masthead page.

IC971336L

⁽¹¹⁾ Crystals of *trans*-Os^{III}(tpy)(Cl)₂(5-CH₃-tetrazolate) DMF were grown by vapor diffusion of Et₂O into a DMF solution of the compound. They are monoclinic, space group C2/c, with *a* = 22.321(5) Å, *b* = 13.146(2) Å, *c* = 14.549(5) Å, *β* = 105.37(2)°, *V* = 4116(2) Å³, *Z* = 8, fw = 604.47, *d*_{calc} = 1.951 g/cm³, and *μ* = 6.47 mm⁻¹. Intensity data were collected at -100 °C on a Rigaku diffractometer in the *ω* scan mode. A total of 3625 unique reflections were measured, with 2860 having *I* > 2.5*σ*(*I*) used in structure refinement by full-matrix least-squares techniques (266 parameters). Absorption corrections were made. Final *R* = 3.0%, *R*_w = 3.7%, GoF = 1.21 (*R* = 5.1%, *R*_w = 4.1% for all reflections). NRCVAX was used as the software package. A disordered DMF molecule was found in the lattice, and its disorder was modeled successfully.

^{(12) (}a) Moore, D. S.; Robinson, S. D. Adv. Inorg. Chem. 1988, 32, 171. (b) Butler, R. N. Tetrazoles. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 5, p 791.

^{(13) (}a) Lieber, E.; Oftedahl, E.; Rao, C. N. R. J. Org. Chem. 1963, 28, 194.
(b) Dunn, A. D., Rudolf, W.-D., Eds. Carbon Disulphide in Organic Chemistry; Ellis Horwood: New York, 1989. See also and references therein.

⁽¹⁴⁾ Relevant metric features: Os-Cl (mean) 2.363(2) Å, Os-N(S) 1.834-(7) Å, N-S 1.459(8) Å, Os-N(tpy) 2.032(7)-2.084(7) Å. Details will be published in: Demadis, K. D.; Meyer, T. J.; White, P. S. Submitted for publication.